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. SﬁMMARY

This report gives a theoretical discussion of the distribution of
lcads on rivets comnecting a plate to a beam under transverse lcads.
Two methods of solution are given which are applicable to loads up o
the limit of proportionality; in the first the rivets are treated as
discrete members, and in the second they are replaced by & continuous
system of Jointing. A method of solution is also given which is appli-
cable to the case when nonlinear deformations occur in the rivets and
the plate, but not in the beam.

The methods are illustrated by numerical examples, and these show
that the loads carried by the rivets and the plate are less than the
values glven by classical theory, which dces not take into account the
8lip of the rivets, even below the l1imit of proportionality. Thie
difference is corsiderably accentuated when nonlinear defcrmations cccur
ir the structure and the beam then carries the greater portion of the
bending mcment. If the material of the beam has a higher proportional
limit ard s higher ultimate strength than the material of the plate,
there 1s thus a transfer of load frem weeker 40 stronger materiel, and
this is to the advantage of the structure.

The methcds given are of simple application and are reccommended

for use in the design of light—alloy structures when the design lcad
ie likely to be ahove the proportional limit.

TINTRODUCTION

-This report contains a theoretical -discussion of tﬁe distribution
of loads on rivets connecting a plate to a beam under transverse lcads,

lReprint of Report No. S. M.E. 3301, Oct. 19hh issued by the Royal
Alrcraft Establishment, Farnborough, England
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and the analysis i1s developed .on similer lines to those used by the pres—
ent author in determining the distribution of loads in riveted Joints
(reference 1). No allowance is made for eny inter-rivet buckling of the
plate. ' -

Two methods of solution are given which are applicable to loads up
to the limit of proporticnality; in the filrst the rivets are treated as
discrete members, and in the second they are replaced by a continuous
system of Jointing. A method of soluticn 1s also given which 1s applica—
ble to the cass when nonlineasr deformations cccur in the riveis and the
plate but not in the beam. A number of numerical examples is given to
1llustrate the methods of analysis end concluslions are drawn frcm the
results obtained.

If the width of the plate ls large in comparison with the length of
the structure, only part of the plate will be effectlve as a load carry—
ing member. Although this problem is not entered into here, 1t is of
conslderable Importance in the design of stressed skin and reinforced
concrete structures, and reference may be made to the known approximste
solutions given in reference 1 on the subJect.

SOLUTION APPLICABLE TO LOADS UP TO THE PROPCRTIONAL LIMIT
First Method — Rivats Treated As Discrete Members
The structure is essumed to be arbitrarily locsded ss shown in fig~
ure 1 and the mcment diagram 1s also assumed to be known. Let
Ay area of the beanm

Ap area of the plate

I mcemenit of inertia of the beam about an axis through the center of
mass of the beam . .

I mcment of inertia of the plate about an axis through the center of
mase of the beam (in practice I, 1is small and is of little
importance in the analysis of the load distribution)

a distance between the centers of mass of the beam and the plate

. M 2 .
I = Iy +Iz+ A; Az a /(A7 + Ap), moment of inertia of the whole
section (1.e. the beam and the plate) about an axls through
the center of mass of the whole section
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The stiffness of the siructure 1s not, however, knecwn in terms of I
because rivet slip occurs, and the angle of bending ¢ for a length 1
of the structure (as shown in fig. 2) 1s therefore not assumed to be known.

8y = CPy 8,, slip at 1™ rivet under a losd Py

and

T i g th e )
8141 = CPi41 By; 'slip at (1-+ 1) rivet underJa*load/ Py41,”
where

5, = 1/EA,

is the extension}of a section of area Ag .undérfunif’loa@ end C is a
ccefficlent representing the stiffness of the rivet. The total exial.
load in ths structure 1s zero and hence the total tengile lcad Ny in

the plate is equal to the total compressive load in the beam. There is
clearly no axial lcad in the plate to the left of the first rivet, and
in genseral . ' - ,

Ny =Py +Po+ .. .P1

The bending moment in the struciure at a section midwey betwsen two rivets
is denoted by My can then

Mi = E(Il + Ia)¢1/74 + &Ni

Consilderation of the extension et, the common surface of the plate and the
beam gives the following relaticn between the rivet sllp at two succesalve
rivets

Nil/EAp — t201/2 + 81 = Nil/EAy + (a — t2/2)#1 + 8142

that 1s

& ={ o1 = Bra + Bi(L/a +‘1/Aa')/E} fa

(1/ma) {-(c/A) (P1 — P141) +(1/A1 + 1/A2)"}‘[_, L
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and on substitution into the asbove equaticn for My it is found that

5
M1=(I; + Io) {(C/A) (P1 — Pi41) + N3(1/Ay + 1/A2)J}f/a + ally

that 1s

r B
Py1=Pi+(m@mﬁlml+1M2+évul+hﬁ~—mhﬂh+zg,

If there are variaticns not cnly In the cross—sectional area but
also in the pitch and the stiffness of the rivets along the beam, the
correspending equation may be found In the following way. ZLet 1, and

Ao be the rivet pitch and cross—sectional area at scme standard section
and :

8o = lo/EAo
The slip at the i¥h  rivet 1s now written as

where Ci is the rivet stiffness and it is then found that

Mi = E(Ty + Io)@3/l1 + aNy

s b
:5{P1 = P14y + Ni.li(l/Al + l/Az)[Ef

from which

[ sl h

i 2, } 8 1
Pi+y = (Ci/ci+1)Pi+(1iAo/ZoCi+1)iNii1/Al+l/A2+a/\Ii+Iz){“ aMy /(I3 + Iz)J

where the length between the ith and (i + l)th rivets is 1 and
i

Ay, Ap, 11, and Ip are implicitly understood to have the suffix 1
assoclated with them. '
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If the mement diggram for the structure is known,the load on each
rivet may be expressed in. terms of the load , Pj. .on.the first rivet and
this load 18 determinéd from the équation o :

Tho andlysis ‘ls of ‘Gourse simplifisd:when'thers is symmetry about

the center line of the structure

When the riveéts sre absolutely rigid, that is C =0,

= Mi/x

where

[ 1,7
k =‘iIl + I + A Aza?/(Ay + Az)}/‘iAl Aza/(A1+A2i}

and this result corresponds to the classicsl theory where the rivet lcads
are obtained from the increase in M between successive rivets. This
load distribution ie, however, considerably altered by the slip of the
rivets.

Example 1

Consider a simply supported beam under a total losd Q uniformly
distributed along the span L, as shown in figure 3, thus giving a
maximum bending mcment M equal to QL/8. The span and rivet plich
are taken to be 20 inches and 2 inches,respectively, and the other
dimensions are shown in filgure 4. It is found that

Ay = 0,360 inch2

Ao = Ap = 0.116 inch?
I, = 0.01080 inch’

I = 0,00013 inck

and
a = 0,358 inch

Assume C = 3.84 (this value of the rivet stiffness is chosen because
it gives simple numbers for the final coefficients) corresponding to a
rivet slip of
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5 = (P/Ed) £ = CP(1/EA,), that 1s, C = £(A,/14)
vhere d 1is the rivet dlameter and f = 10.3. Then
e 5 b
(Ao/CH1/Ay + 1/Az + & /(I + I2)[ = 0.7 and Aca/C(Iy + I2) = 1.0,
. ~ '
The bending mcments at sections mldway between the rivets are

Mg = Mg = 0.9Q

Mo = Mg = 1,6Q
Mg = M, = 2,1Q

My

)
=
j0)]

{
n
L]
=
&£

H]
n
U
O

and. - . Ms.

The equations to be golved are now

1.000 P,
-1.700 Py = -0.900§
©.3.590°Py = 3.1309
7.993 Py — 8.051Q
172991 F1 —18.908Q
40,583 P; — 43.100Q

HdJ
H

%

]

Po =Py + 0.7PL — M3

Pg = Pp + 0.7(Py + Pp) — Mp-

P, =Py + O.T(Pi +P2+ Ps)'— MS

P_ =P, + 0.T(Py + P + Pg.+ Py) =M,

+ 0,7(Py + Ps + Pg + Py + Ps) — Ms

oo

d
]

0

g
[§]

end from symmetry

Pg = — Ps
that is
’ 40.583 Py — 43.100Q = — 17.991 P; + 18.908Q
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that 1s, o S
S 0 Pp o= 1.059Q

and it fcllows that
Py = 0,900Q
Py = 0.671Q
P = 0.412q
E = 0.141Q

and ‘
Né = P1 + Pg + .. .P5 = 3.183Q

The bending mcments M;, Mo . . . Mg have been taken to be equal to the

values midway between successive rivets, and if the average values of the
bending mcments between successive rivets are taken instead the following
more accurate results are obtained,

1.0520

Py =

Pz = 0.897Q

Ps = 0.670Q

P, = O.k12q

P; = C.1hk1q
and

Nz = 3.172Q

The errcr introducéd by the sbove approximation for the tending mcments
1s, therefore unimportant.

The results given by the classical theory (i.e., infinitely stiff
rivets) ave

Py = 1.286Q
P = 1,000qQ
Pa = 0.7159
Py = 0.429q
Pg = 0.1430

and N, = 3.573Q

#t




8 NACA ™ No. 1134

and a ccmparison with the previous results shows that rivet slip has re—
duced the maximum rivet lcad by about 18 percent and the tensile lcad in
the plate by ebout 11l percent.

Example 2

If the structure 1s extended beyond the supports with en additionsal
rivet at each end as shown in figure 5, similar calculaticns give the
results

P, = 0.469Q
Py = 0.798Q
Pp = 0.784Q
Py = 0.620Q
P, = 0.390Q
P = 0.133Q
5
and
NE = 3,194Q

that 1s, the additional rivet at each end of the structure reduces the
maximum rivet load to only 62 percent of that found by classical theory
and to 75 percent of the more accurate result.

Example 3

Suppose now, that instead of being simply supported, the structure
is continuous over a large number of spans, The loading and dimensicns
of the structure are taken to be the zame as before and the moment dia—
gram is shown in figure 6. ¥From symmetry

Py = — Py

and

Py - Pg

and 1f N, d1s the axial load in the plate at the supports

Ny

No + P3

No = Ny + P3, and so forth.

[
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Then with the same dimensions as in example 1,

Piyy = Py + 0.7 Ny — Mg

where the bending memeénts;: teken to-be the average values.between succes—
sive rivets, are '

”

- 1.h422q

S Q
fl

= — 0.7679

E
1

0.067Q.

it
1

0.433Q
= + 0.733Q

and

= + 0.833Q

g EEFF
N

The equation
Py .= Po + 0.7 No + 1.hk22Q.
tegether with
P; = — Py
gives

" Py = 0.35 Ny + 0.711Q - -

The other equations for'thé'rivet loeds are

i

_Pp = P1+0.7 (N #+Py) + 9;767Q '1.295C T, + 1,97570

Pa = Pot0.7 (Ng#Pi4Pp) + 0.067Q = 3.1465 N, + 3.9234Q
By = Pa+0.7 (N +P1+P+Pg ) — 0.433Q = 7.2006 N, + 8,1175Q
B = Pg+0.7 (N #P1+Po#Pa+Ey ) — 0;733Q ' ’='16,295; N, + 17,6938
and Bs = Bs+0.7 (NéfPl+Pg+fé4fg+Eg}:~.03833é =,36f796l No;$:39;?558@
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which together with

give the maximum load in the plate and the rivet loads as

N. = - 1,078Q (- 2.382q)
P; = + 0.334q (+ 1.286Q)
Po = + 0.579Q (+ 1.000Q)

0.530Q (+ 0.715Q)

Hd
£

[

+

0.353Q (+ 0.4299)

)
»

i

+

0.123Q (+ 0.143Q)

dJ

a
i
+

and
Ns = + 0.8410 (+ 1.191Q)

According to the classical theory (i,e., infinitely stiff rivets)
the rivet lcads are only dependent on the shear and sre therefore the
game for the continucus structure as for the structure with only a
single span. These results are given above in brackets after the mors
accurats cnes, and it is seen that the maximum rivet lcad and maximum
load in the plate are only 45 percent of the values found by claessical
theory. Such great reductions can only be expected when the number of
rivets is ccmparatively small and the rivets are not very stiff,

The ebove examples show that if the bending mcment is charging

sign, as in the case of a continucus structure, the plate tekes a cmaller

proportion of the lcad then it does in the case of a-simply supported

structure. The slipping of the rivsts reduces the load taken by the plate

and the bending mcment taken by the beam is correspondingly increased.
According to classical theory, and for the dimensions assumed in the
above examples, 51.2 percent of the total mcment comes from the force N
with arm a, while of the remainder, 48.2 percent ccmes from bending of
the beam and 0.6 percent frem bending of the plate. The more accurate
value of N 1is, however, only 45,2 percent of the value given by clas—
sical theory, and hence only 23.2 percent of the total mcmernt ccmes

from N and 76.2 percent from bending of the beam. The meximum

gtress due to bending and axial forces in the beam thus increases by

32 percent (the berding mcment increases but the axial force decreases ).
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The ratio of the load. N- to.the value given by.classical theory
measures the extent to which the plate carries.ths bending moment. This
retlo varles fram0.452 at the supporte to 0.705 at midspan and the ef—
fective section of the structure is not therefore constant. The moment
dlegram assumed is.only correct for constant stiffness, and 1f & more
accurate soluticn to the problem is required a second order correction
must be made. This correction does not affect the rivet lcads and only -
intrcduces a change in the bending moment. It can easily be found by
writing the total extension in the plate between two supports equal o
zero. For example here - '

N = 0.011Q
and hence

Second Method — Rivets Replaced By A Continuous System Of Jointing

The rivets are not now treated as discrets members as in the solution
glven In First Method, but are replaced by a continuous system of Joint—
ing. The rivet loads P3i are thus revlaced by a continuously distributed
load and the fundamental equations are found in the folliowing way.

Let x bDe the distance from one and of the s“ruzturc t~ the point con—
sidered. The axial locad N 18 now assumed +to be a continuous variable,
ard 1f 1 1is the rivet pitch (now assumed o be constant) the rivoi load
is gilven by

Py = 1dN/dx

and since

54 = CP41/EA

it follows that
5 = (C12/BA)dN/dx
where the rivet slip © is now also régardéd as a'céntinuous varlable,

The angle of bending @1 over the length @ is replaced by the angle
d¢ over the length dx and it is then found‘that

M= E(I; + Tz)df/ax + aN
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The new equatlon formed by considering the extension at the common
surface of the plate and ths beanm is

Ndx/EAz — t2a@/2 + & = — Nax/EA; + (a —to/2)ag+d + d4d

that is,

d3/dx = { - d8/dx + N(1/Ay + 1/45)/E } /a

-~

= { — (c18/n)a®N/ax® + N(1/a; + 1/A2}} /Ea
and substitution back into the above equation for M gives
i . 1
M= (I + In) iN(l/Al + 1/A5) ~ (CZZ/Az)dZN/dXZJ'/a + aN

that 18,

|
(C13/A)d%N/ax® -—{l/Al + 1/As + a2/(I; + Io) j- N =— aN/(I, + Io).

For simplicity write

(I1 + Io) {l/Al + 1/8xa2/(T; + Iz)L /a

23
it

|
-

= {Clz/A\rl/Al + 1/Ap + a%/(Iy + I.) H

i

o
i
ol

and
x/b

N
i

and then the differential equation for N takes the form
a2N/dz® - ¥ = M/k

The general solution of this eqguation is

N = Ae” + Bo © ~ oF fffé“zzf ez(M/k)dzll»dz
i 5 - J
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where A and B are arbltrary constants to be determined from the fact
thHat N ig identically zero &t each end of - the structure.

Example 1

. The above analysis will be applied to the same problem discussed in
example 1 of First Method. It is found that for the same dimensicns

w
1

=0,T700 inch
and

o'
il

2.390 inches

It is most convenient_fo take the origin of coordinates at midapan and
then

<QL/8>{1 - (2x/)?}

2.5q {1 — (0. 1x)2}

=
]

25le (0.1 x e3%mﬁj

i

2.50 (1 — 0.0571kz%)

and z = C at midspen and z = % 1/0.2390 = + 4,184 at the ends of the
structure. From the value of M it is then found that

N=he” +3Be  + Q(3.163 — 0.20427)

Now there is symmetry about the origin and therefore A is equal to B,
Further N is zero for z = 4.184 and this finally gives

=B = 0.0062Q

At midspan, that is for =z = O,

= (2x 0.0062 + 3.163)Q = 3.175Q

and this result is In good agreement with the value of 3.172Q found
previocusly.
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The rivet loads may now be found from the change in the value of N
‘over intervals corresponding to the rivet pitch. If, however, the number
of rivets is not large, the method given in First Method is simpler for
practical use.

SOLUTION APPLICABLE TO LOADS BEYOND THE PROPORTIONAL LIMIT FOR THE RIVETS

AND THE PLATE, BUT NOT FOR THE BEAM — RIVETS TREATED AS DISCRETE MEMBERS

In order to pimplify the analysis of the problem the beanm i3 assumed
not tc bte stressed beyond the limit of proportionality. Nonlinssr defor-
mations are, however, assumed to occur both in the rivets arnd in the plate.
The cross-sectional area of the structure is assumed to be constant and
the rivet pitch and stiffness are assimed to be the same foy all the rivets.

Above the limit of proportionality the equaticns that determine the
lcad distridbution are no longer linear and, although an exact soluticn
may be formally obtained by treating £ as a nonlinear functicn of P,
the ccmputational work would then be very sevsre. The results may, how-
ever, be cobtained tc any required degree of accuracy in the following
simple way, provided the load-extensicn curve is known.» Assume that the

icad on the 1™ rivet 1s P4 and then near this value

where the meaning of the constants k; and S5 may be seen frcm fig—
ure 7. The quantity k is proportional to the reciprocal of the tangent
ncdulus in the seme way that C  1s proportionsl to the reciprocal of the
modulus of elasticity (E) at low loads. The stress F in the plate
may also be ayproximately assumed to be a Llinear function of the strain

€ within a certain rangs of nonlinesr deformations, that is

f =1+ K
where K 1is the tangent modulus and fo 18 a constant stress.

Now let
Axt = KAn/E and Iot = KIL/E

and then the bending mcment necessary to produce an angle of bending ¢
over the length 1 1is

1This methed is aleso used in reference 1.
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. Mz = f £ yaA = f (£ + Ky )ydA = KfIo/1 = EfTe /2

vhere y is the distance from the middle surface of the plate and &A is
an element of area of the plate.

Then the total bending moment in the structure is

M = E(Iy + I22)8/1 + al;

The elongaticn € of the section 1 wunder the axial load Ny =F Az 1is
given by o .

€l = (f - £ )1/K = (N; — T) /KA = (Ny — T)/Enst

where

T =T, Az
The equation connecting the slip of successive rivets is now found to be
(Ny ~ T)1/EAS — t200/2 + By = — N41/BA; + {a — t2/2)¢ + Bi4q
and 1t then fcllows that
Pi+a = Si41 + (kg/ki41) (P1 — 81) + (Ao/ki+1)

r ( B . \-
X l ﬁll/Al + l/Azl + &2/(11 + Ip) r Ny - T/At - 8—Mi/(Il * IZI)J

In mest cases it is probably accurate enough to assume that

k = ki = ki+y and S84 = Sq441°

for all rivets lcaded above the limit of proporticrpality, and then

Pi+1 = Pi + (Ao/k) [{1/1&1 + 1/ + a3/(T; + I1) }Ni‘—— T/As™ -

1
~ aMy /(I + Ial)J
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It must be remembered, howsver, that even i1f only one rivet is loaded with~—
in the limit of proportlonality and the adjacent rivets above thle limilt,
the complete formula must be used. For example, if

51 = k1 (P1 — S1)%¢

and
81+1 = CPi+1 B0

then

i 1
Pi+1 = (k1/C)(P; — 81) + (AO/C){{jl/Al + /A% + &%/{Ty + I2N) r Iy

Example 1

The structure discussed in example 1 of First Methcd is now assumed
to be lcaded above ths limit of proportionality. '
For the rivets i1t 1s assumed that
X =4 and S = 0.15 ton
thus giving nonlinsar deformations for locads abovs

kS/(k ~ C) = 0.20 ten

which corresponds to an average shear stress cof 10.5 tons per équare inch.
For the plate it is assumed that

k=E/t and T = 1.35 tons

thus giving nonlinear deformeticne for loads above
ET/(E — k) = 1.8 tons

which corresponds to an average stress of 15.5 tons per square inch.
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It has‘alieadybbeen found that for loads below the limit of propor—
ticnality .

Py = 1.059Q
Po = 0.900Q
Pa = 0.671Q
P, = 0.412Q
and
= 0.1k1Q

Ps

The proportional 1limit is therefore resched when Q = 0.189 ton
(this gives P; = 0.2 ton) whils the losd in the plate is still fer below
this limit. '

If the load is increased nonlinecar deformestions cccur in the first
rivet and suppose that the increase is just up to the limit of propor—

tionality for the secornd rivet. The rivet slip for the first and seccnd
rivets may be written as

1 e}

and assuming that k = 4LC, this gives
Pz =Py + (1/4) (0.7 Py = My) = 1.175 ?1 - 0.25 M;
The rivet slip for the second and third rivets may be written as
81 = CPy 8,
and then as before

Ps = Pz + 0'7(Pl + Pg) "Mg

Similarly, the other equations are the same as those previoﬁsly obtained
for lcads within the limit of proportionality. Hence
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Py = 0.990Q Ny, = 0,990Q
P = 0.938Q Np = 1.928Q
Pa = 0.687Q N5 = 2.615Q
P, = 0.418q ! N, = 3.033Q
P, = 0.141Q Ny = 3.174Q

and these values are valid up to Q = 0.213 ton (this glves Po = 0.2
ton).

The load 1s now increased up to the limit of proportionality for the
third rivet. The equations to be solved are then

Pe =Py + (1/4) (0.7 Py — M)
-
P = P2+ (1/4) 0.7 (By + B2) - Moy
P, =B + 0.7 (Py + Pz + P3) — Mz, and so forth.

which gives Ps = 0.2 ton for Q = 0.260 ton. In this way the rivet
loads may be successively found for Q = 0.358 ton givire Psa = 0.2 tcn
and for § = O,7:1 ton giving Ps = 0,2 ton. The numerical results For
the five caser are given in the table below:

o (tons) 0.1891 0.213 % 0.260 | 0,358 { ©.741

Py (toms) | 0.200| 0.211 | 0,240 ! 0,308 | 0.595
Py (tons)| 0.170] 0.200 | 0.223 i 0.282 | 0.532

Py (tons) | 0.1271 0.147 1| 0,200 | O.2k2 | 0.432

-3

P, (tons)| 0.078] 0.089 1 0.117 | 0.200 | 0.3

o)

tons){ 0.027; 0.030 ! 0.039 | 0.084 | 0.200

N

{
i
:
1
H

Ns (tome)|{ 0.602; 0.678 1 0.819 4 1.09 | 2.076

Petween these values the rivet loads will vary linsarly with the total
load Q,
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The .ultimate strength of the first.rivet is, héwever; likely to de-
reached before the fifth rivet is:loaded to-the:limit of. proportionality,
and. further : the.plate- load Ng . 'is also ltkely to-have: alreddy exceeded’
the limit of proportionality. The tabulated values are therefore proba—
bly only valid up to some value of Q between 0.358 ton and 0,74l ton,
and if for example the ultimate strength of the rivets is 0.35 ton, this
value is 0.414 ton giving P; = 0.35 -ton and -Ng= 1.29 tons. Classical
theory gives Py = 0.533 ton and Ns.= 1.48 tons, and it follows that
rivet slip has reduced these loads by 34 perceént and 16 percent, respec—
tively. . ‘ o .

Example 2 )

It has been shown that with the same.dimensions as in example 1 of
First Methcd the ultimate strength of the rivets 1s reached before the
loads in the plats exceed the limit of proportionality. In order to make
the rivets and the plate carry loads above this limit at the same time,
the span of the structure may be increased while the cross section and
riveting remain unchanged. The structure considered in thies example is
shown diagrammatically in figure 3. The distributed load is now replaced
by a concentrated load (Q); the rivet pitch is unaltered, but rivets are
now situated Immediately over the supports.

The vertical. shear load now has the constent value of Q/2, and

according to classical theory the rivet loads are given by

P1 = 0.7143Q
and

Pp =Py = .. .=1.4286q

The bending moments at sections midway between the rivete are

=
u

0.5Q

=
)
i

1.59
2.5Q
= 3.5
h5q
5.5Q
= 6.50 -

SR
i 1 i

4]

Lo

and
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and the maximum bending moment at mid—span is "M = T7Q, which according
to the classical theory gives a maximum load in the plate of N = 10Q,
For loeds below the limit of proportionality the equations to be solved
are . SR . .

Py = Py + 0.7 Py — 0.5Q

Ps = Pp + 0.7 (Fy + Pp) — 1.5Q

Ps = Pg + 0.7 (Py + P2 + Pa) ~ 2.5Q

S Q8 0080820 0806000068360 0800s0000

P8=P7+Oa7 (P1+P2+. . .+P7)-"605Q

From symmetry

Py =0
and then
Py = 1.025Q N = 8.267Q
Po = 1.242Q
Py = 1.328Q
P, = 1.34kq
Ps = 1.301Q
Pg = 1,170Q
P, = 0.857Q
Pg = O

Because the number of rivets 1s rather lerge, the maximum rivet lcad
1s fourd to be as much as G4 percent of the value given by classical theory.
Not all the rivets, however, reach so high a percentage, and the lcad in
the plate 1s therefore only 82.7 percent of the classical value. If non—
linear deformations cccur for rivet lcads sbove 0,2 ton, the above results
are only valid up to Q = 0.179 ton (this gives P, = 0.2 ton).
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Suppose now that the lced 1s increased until nonlinear deformations
occur in all rivets except the eighth which, from symmetry, still carriles
no load, As before, the value k = 4C is taken .and. the equatlione %o be
golved are

Py =P; + (i/ﬁ)A(O;7 Py - 0.5Q)

Pg

i

Po + (1/h)-{o.7 (Py + P2) ~ 1.5Q }-, and so forth.

If the seventh rivet is Just loaded to the limit of'proporﬁionality
(0.2 ton)

O=Pg =Pr + 0.7 (P1+. . .+ Pr) —6,5Q
and beyond thls limit

=Py = (WC/O) (B, —8) + 0T (PL + ., . Pr) - 6.5Q

that 1is,
P, — 0.15 + 0.25 {0.7 (Pr+. . .+Pq) -6.5Q}=

Frcm this last equation

P; = 1.0524kQ + 0.0136
Po = 1.1116Q + 0,0160
Py = 1,1152Q + 0,0211
P, = 1.0641Q + 0.0300
P, = 0.9492Q + 0,041
s = 0.4504Q + 0.0659
P, = 0,4830Q + 0,0992 _
Pg = 0 ' N, = 6.5259Q + 0.2899

and these results are valid from q = 0,2087 ton, giving B, = 0,2 ton,
to Q = 0.2314% ton, giving N, = 1.8 toms, ‘which is the assumed limit
of proportionality for the plate, e

-
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Beyond this load nonlinear deformations also cccur in the plate at

the seventh section and 1ntroducing the quantities A2 " end Igl,' the
equation for Py 1is then

that 1is,

: [ '
P, —0.15 + 0.25~i1.h83(P1 + .. .+P)~1,042%1,35 1,01 X 6.5Q}'= 0

This gives
Py = 0.9677Q + 0.0329
Pp = 1.0120Q + 0.0386
Py = 0.9835Q + 0.0512
P, = 0.8771Q + 0.0727
Py = 0.6741Q + 0.1070
Ps = 0.3392Q + 0.1600
and
Py = 0,1365Q + 0,2409

and these values are valid up to Q = 0,276 ton, when nonlinear deforms-—
tion in the sixth section of the plate commences, It is then necessary
to use the following equation for P,

N
P, = Pg + 0.25 {51.h83 (Py . . .+ Pg) —1.042 x 1,35 -~ 1,01 x 6.5Q t

end the other equations are as given above. Then

0,9053Q + 0,0518
0.9387q + 0.0609
0.8863qQ + 0,0805
0.7392Q + 0.1143
= 0.4715Q + 0,1682
0,0461Q + 0,2514
0.1217Q + 0,1693

e B B B B
B B R N N
#on B w0 on

and P7

H
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and these values are valid up to Q = 0,336 ton when nonlinear defcrma—
tion in the fifth section of the plate conmiences), provided the first
rivet bas not already reached 1ts ultimate strength Simi)arly, resultse
may be found as nonlinear deformations spread to other secticns of the
plate, and between these characteristic values of Q the rivet loeds
are linearly dependent on the total load Q. It is seen that when there
are meny rivets the maximum vivet load does not differ greatly from the
value given by the classical theory so long as the lcads do not exceed
the proportional limit, There is, however, & considerable difference
when the loads are above this limit, For thig particular: example the -~
maximum rivet load at the ultimate load is only about 78 percent of the
classical value, The plate load is always comparatively less, snd agaln
for this case is only 68 percent of the classical valuse.

Numerical results have also been obtained when the rivets ars assumed
to be rigid and very closely pitched while the other dimensicns and the
loading are the same as those above. A comparison with the previous re—
sults shows that for lcads near the ultimate strength of the etructure,
the major portlon of the reducticn in the load in the plate 1s dus to
nonlinear deformation of the plate, and that rivet slip only ccontridbutes
to this reduction to a lesser degree,

CONCLUSIONS

The examples glven show that the loads carried by the rivets end the
plate are less than the velues given by the classical theory, which dces
not take into account the slip of the rivets under load, even when the
loads are within the 1limit of proportionality. Thils difference is con—
sildersbly accentuated when nonlinear deformations occur in the structure,
and the beam then carries the greater portion of the bending mcment., IFf
the material of the beam has a higher proporticnal limit and a higher
ultimate strength then the material of the plate, there 1s a transfer of
load from weaker to stronger material and this is to the adventage of the
structure. The effect of the slipping of the rivets 1s not cnly dependent
on the characteristics of each rivet but also on the number of the rivets
and the variaticon of the bending mcment along the structure, The examples
also show that if there is only & small number of rivets in & secticn of
the plate with maximum tension and meximum compression (as for continucus
beams) the lcad in the plate 1s considerably less than that given by clas—
slcal theory. Further, even if the number of rivets is large, the rivets
and the plate evade a very considerable part of this load If they are
stressed beyond the limit of proportionality. ‘
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The methods described are of simple applicaticn and are reccmmended
for use in the deslgn of light-alloy structures when the design load is
likely to be above the proportional limit,
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